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SUBSONIC PYlNC LOADINGS ON A I_5° S_4EPTBACK-W!NG AND BODY

COMBINATION AT HIGH ANCLES OF ATTACK

By John A. Axelson and Jack F. Haacker

SU_4ARY

A study has been made of the subsonic pressure distributions and

loadings for a 45 ° sweptback-wing and body combination at angles of attack

up to 36°. The wing had an aspect ratio of 5.5, a taper ratio of 0.53,

and NACA 64A010 sections normal to the quarter-chord line and was mounted

on a slender body of fineness ratio 12.5. Test results are presented for

Mach numbers of 0.30 and 0.50 with corresponding Reynolds numbers of 1.5

and 2.0 million_ respectively.

The stall patterns and spanwise loadings at high angles of attack

for the present model are correlated with those for other 45 ° sweptback-

wing and body combinations having aspect ratios between 4.0 and _.0. A

tentative approach is presented for extrapolating the Weissinger span-

loading method to higher angles of attack_ and for deriving the spanwise-

load distributions for 45 ° sweptback wings at angles of attack above 20 °.

The investigation also included tests of the body in combination with

only one panel of the swept wing. The problem of estimating the normal-

force coefficient for the single panel at high angles of attack is

considered.

INTRODUC TI ON

Swept-wing aircraft frequently exceed angles of attack of 20 ° during

inadvertent maneuvers such as result from pitch-up or inertia cross

coupling. No methods are available for predicting the loadings at these

high angles_ and relatively little is understood concerning the complex

flow fields which develop around the wing as discussed in references i and

2. To meet the problems which arise at high angles of attack_ both the

researcher and the aircraft designer must rely heavily on the relatively

small amount of available experimental data.

The purposes of the present report are to present some additional

experimental loadings at high angles of attack and to attempt a correla-

tion and analysis of the results. A study is made of the pressure distri-

butions_ normal-force coefficients_ and centers of pressure for the model

with the complete swept wing and with one wing panel only. The



experimental results are correlated with _hosefor other 45o sweptback-
wing and body combinations from reference_ 3 and 4 and from unpublished
data. A tentative approach is presented :'or estimating sweptback-wing
loadings at high angles of attack. The s_udy is restricted to sweptback
wings ha_ing sweepangles of approximateli_ 45° and aspect ratios between
4.0 and 8.0. Exact expressions for velocity componentsand for component
angles of attack are presented (appendix A) to replace the heretofore
used linearized relations of simple sweeptheory which are valid only at
small angles of attack. The effects of Machnumberare not considered.

NOTATION

A

Ar

b 2

aspect ratio of sweptback win_ -_-

reduced aspect ratio of one panel of a sweptback wing as approxi-

mated by a rectangular surface (f:g. 24(a))

b wing span

b' span of the low-aspect-ratio wing (:'ig. 2_(a))

lift

CL lift coefficient, qS

C m

c m

pitching-moment coefficient about t]_e lateral axis through _;

from force data for the wing-body combination, pitching moment
qS_

from pressure data for the wing p_tnel,

c cd
Cm _------+ cn d_

CCav

section pitching-moment coefficient about the lateral axis through

c 7o _ (c/4 - x)_, ACp c d -c

CN normal-force coefficient:

from for<e data_ normal force.
qS

_o Ifrom pressure data, Cn -icCar d!l

Ch ' normal-force coefficient of _l unya_,ed, low-aspect-ratio wing
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C n

Cp

ACp

C

Cav

c r

ct

d

M

P

P_

q

S

V

X

Y

C_

_r

1 Xsection nodal-force coefficient, ACpd

p-_
pressure coefficient,

q

lower surface pressure coefficient minus upper surface pressure

coefficient

local wing chord

average wing chord

root chord

tip chord

wing mean aerodynmnic chord,

_01 c2d_

o I cd_

longitudinal distance between the lateral axes through _ and
c

through _, positive when forward of

Mach number

local static pressure

free-stream static pressure

free-stream dynamic pressure

wing area

velocity

lon6itudina] distance

lateral distance

angle of attack of win(_ plane

dimensionless lateral coordinate, 2__y measured from center line
b

along the quarter-chord line

dimensionless lateral coordinate measured from mid-semispan (fig. 17)



A

dimensionless length of bound leading-edge vortex on single panel
(fig. 24)

average angle of sweepof the wing

taper ratio

Subscripts

b

n

velocity components or angles in a plane perpendicular to the plane

of the wing and passing through the midchord line of the swept-

wing panel or through the midspan of the equivalent wing of

reduced aspect ratio

velocity components or angles in planes perpendicular to the wing

plane and the midchord line

free stream

APPARATUS AND YODEL

The investigation was conducted in the Ames 14-foot transonic wind

tunnel, which is a closed-circuit, return-type tunnel having a flexible-

wall nozzle and a perforated test section and operating at atmospheric

total pressure. The model was mounted on the sting-support system shown

in figure i. The model studied in referemce 5 was used for the present

investigation and is shown in figure 2. the swept wing was symmetrically

mounted on the center line of the fuselage_ which was a Sears-Haack body

having a theoretical fineness ratio of 12.50 but cut off at 81 percent

of closure to facilitate sting mounting. The wing had an aspect ratio

of 5.50, a taper ratio of 0.53, and NACA _4AOIO airfoil sections in

planes perpendicular to _heir own quarter-chord line which was swept
back 45 ° .

TESTS AND CORRECPIONS

Tests

The wind-tunnel program included tests at angles of attack from

0° to 36o in 4 ° increments for Mach numbers of 0.30 and 0.50 with

corresponding Reynolds numbers of 1.5 million and 2.0 million based on

the mean aerodynamic chord. Forces and mnments were measured for the

body alone and for the body with the complete wing by means of an

electrical strain-gage balance housed within the model. Pressure distri-

butions were measured on the upper and lo_er surfaces of the wing at five



stations, as shownin figure 2, for the body with the complete wing and
with one wing panel only. Records of the pressures were obtained by
photographing multiple-tube, mercury-filled manometersconnected to the
model orifices. The percent-chord locations of the orifices comprising
the iI_oard and tip stations are measured in the streamwise direction,
while those for the three intermediate stations are along chords perpen-
dicular to the quarter-chord line as shown in figure 2. The streamwise
orientation of the root and tip orifices slightly changes the airfoil
section, the pressure distributions, and the integrated characteristics
at these stations. These effects are considered small enough to be
neglected ill the present study.

Corrections

_o corrections for wall-interference effects are deemed necessary

because the model blockage was less than 0.06 percent, and because of

the porous-wall test section in which the tests were conducted. No base

pressure corrections were applied because the model base pressures were

sufficiently close to free-strewn static pressure to render the correctlons

negligible.

Precision

The accuracy of the results based on the sensitivity of the measuring

apparatus and the repeatability of the data is considered to be within the

following limits:

Cp ±O.O3

CL,CN,c n ±0.01

Cm ±0.005

M ±0.005

±0.i °

RESULTS

Presentation of Experimental Data and Results

Pressure distributions.- The chordwise pressure distributions for

each of the five wing stations are shown in figures 3 through 7. Selected

pressure distributions and wing upper surface isobars, such as were shown

in reference 5, at lower angles of attack are presented in figure 8 for

a Mach number of 0.50. All experimental pressure data presented include

results for both the model with the complete wing and with one wing panel

only.
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Section normal-force coefficients and c._nters of pressure.- The

variations with angle of attack of the secti.)n normal-force coefficients

and of the chordwise locations of the center:: of pressure for each of

the fi_e wing stations are presented in figu:_es 9 and I0, respectively.

The spanwise variations of section no_nal-fo:'ce coefficient at each angle

of attack are shown in figure ii. _ile the distributions in figure ii

are not actually loading curves_ they will be discussed as such_ since

they differ from loading curves only bj the ratio of local chord to

average chord. The spanwise locations of the centroids of the weighted

span loadings, CnC/Cav , are shown in figure _2.

Integrated pressure data and force data- The variations with angles

of attack of the integrated wing normal-forc._ coefficients and wing

pitching-moment coefficients for the one- an,l two-wing-panel model con-

figurations are shown in figures i_ and 14_ sespectively. The integrations

covered the areas enclosed within the curves of figure ii extrapolated to

the body center line. Included in figures I _ and 14 are the corresponding

coefficients for the model with the complete wing obtained from the force

tests. Figure 15 presents the lif't- aud no_al-force coefficients from

the force tests for the body alone and for tile body with the complete wing.

DISCUSSION

Measured Characteristics of the Complete Sweptback _ing

Pressure distributions.- As shown in fi_ures 3 through 8, there was

relatively little difference between the low_r surface pressure distri-

butions for each of the five wing stations f)r any given angle of attack.

The maximum calculated pressure coefficient _t zero angle of attack for

a leading edge swept back 46.7 ° is 0.47, based on recovery of the dynamic

pressure normal to the leading edge. The ex)erimental values increased

to as high as 0.70 at 36° angle of attack (fig. 3(i)), partly because

the resultant sweep angle effectively decreased with increasing angle

of attack. (At an angle of attack of 90 ° , t _e wing lower surface would

be unswept relative to the air stremn and woild de'_elop the full stag-

nation pressure over a limited region such a; occurs with a plate normal

to the air stream.)

In contrast to the lower surface pressure distributions, those for

thc_ upper surface exhibited some significant differences between the in-

board and outboard portions of the wing_ in the range from above about i0°

to 20 ° angle of attack. As shown in figure _i(a), there were negative-

pressure-coefficient peaks near the leading __dge at all stations at {!o.

As the angle of attack was increased to 16 ° , the peaks disappeared from

the outboard pressure distributions while becoming more pronounced in

the inboard pressure distributions at _ : C.2. Above 20 ° the upper



surface pressure distributions for all stations were essentially flat_
but the pressure coefficients for the outboard stations continued to
becomemore negative with further increase in angle of attack.

Section characteristics.- As had been noted in references 5 and 6

for angles of attack below 20o_ the inboard wing stations developed

considerably higher loadings than did the outboard stations. The maximum

measured section normal-force coefficient for the swept wing was 1.5

(fig. 9(a)). Each curve of section normal-force coefficient versus angle

of attack exhibited an initial peak_ the peaks occurring at higher angles

of attack the more inboard the station. (The results of reference 5 were

measured for smaller increments of an_le of attack and were used as a

guide in the fairing of figure 9.) Above the angles of attack for the

initial peaks_ the section centers of pressure tended to converge to

40-percent chord as shown in figure i0.

Integrated wing characteristics.- The spanwise distributions of

section normal-force coefficient (fig. ii) were relatively flat at the

lowest angles_ decidedly steep and inwardly concentrated at 20°_ then

progressively flattened again with further increase in angle of attack.

The centroids of the actual loadings (weighted for local chord) shown

in figure 12 indicate an inboard and consequently forward shift for

angles of attack up to 20 °. These shifts in the location of the centroids

are reflected in the pitching-moment characteristics presented in figure 14.

Force data.- Comparison of the integrated pressure results and the

force data for the complete wing and body shows that the body produced

a sizable effect on the pitching-moment coefficients (fig. 14), indicating

a large lever am to the body center of pressure which was probably near

the leading edge of the wing root chord. The lift and normal-force

coefficients for the body alone were less than i0 percent of those for

the complete wing-body combination (fig. 15). The detailed study of the

effects of the body on the loading of a 45 ° sweptback-wing and body

combination, presented in reference 3, concluded that the body lift was

nearly the same as the lift carried by the same area on the wing without

the body_ that is, the wing area blanketed by the body. The distribution

of the loading on the wing_ however_ may be affected by the body inter-

ference_ and application of the method of reference 3 to the wing of the

present model indicated a maximum change in section normal-force

coefficient of 20 percent at the inboard station. The effect of the body

on the wing section loadings converges to zero with increasing distance

along the span (see figs. $ and 9 of ref. 3). There was close agreement

between the over-all normal-force coefficients derived from integration

of the wing pressures and those measured for the wing and body with the

force balance (fig. 13).



Correlation of Sweptback Wings

Section no_nal-force characteristics.- [in order to seek some order

to the seemingly complex behavior of the swei_t wing at high angles of

attack, the results of the present test were compared with those from

other studies of 4% ° sweptback-wing and body combinations listed in

table I. To simplify the comparison, wings with camber, twist, fences,

flaps, chord extensions, and aspect ratios b_low 4.0 were not included.

As shown in figure 16(a), a degree of correl_Ltion existed between the

angles of attack at which the first peak or llaximum occurred in the

section normal-force coefficients, that is, _rhere dcn/d_ _ 0. The

section normal-force coefficients corresponding to the peaks and shown

in figure 16(b) were not so invariant but ra_her appeared to vary with

Reynolds n_nber. (The values for the presen_ test were approximately

the s_ne at both Hach numbers, and the avera_es are shown in figure 16.)

At angles of attack of 20 ° and °4° the highest angles colm_on to all
a_

of the tests, the spanwise variations of sec _ion normal-force coefficient

were compared as showr_ in _'j_ _• l_dre 17. Th_ co:'relation was again fairly

close in vfew of th_o many differences in nod, I geometry and test conditions

(table I). It should not be concluded that "'ariables, such as Reynolds

nmnber_ taper ratio, and air'foil section, ha"e no effect at high angles
Cof at oa k, b_t it does appear that for the r_mge of plan forms considered,

s_ch effects were r,'lat, i,;el/ small.

Spanwise distribution of Cn.- The aver:_ge of the five sets of data

for an angle of _ttack of 20 ° (fig. 17(a)) w_s approximated by the super-

posed distribution function often used for c,mvenience in mathematical

studies such as in references 7, 8, and 9. i_ecause this function extends

to infinity, it is not an accur:_te represent_ttion of actual loadings.

Suitably modified for higher angles of a ttac _, as shown in figure 18_

the new function, containing no singularity, conforms with the flattening

of the c n distributions above 20 ° as shown in figure 19o (The continued

flattening of the function above 36 ° l:_cks e_perimental verification at

the present.)

Estimated Section Loads for the _weptback Wing

The observations made while attem]?ting _o establish some order to

the collection of swept-wing results a% high angles of attack can perhaps

be best organized by considering a tentative method for estimation of the

section normal-force coefficients for the pr{_sent swept-wing model

(fig. 20). Below i0 °, accurate estimates ar{_ possible with the Weissinger

method s_mmarized in reference i0. Between _0 ° and 20 ° , the correlated

angles of :_ttack from figure 16(a) provide u_:eful limits for the extra-

polation of the Weissinger estimates. Above 20o_ the total normal-force

coefficients from force data, if available_ flay be tentatively distributed
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according to the distribution function of figure 18. If the total normal-

force coefficients were not available, the absence of any method for their

estimation would lead to an impasse. With no pretense at rigor, the

single-panel estimate of appendix B distributed according to figure 18

has also been included in the figure to indicate the estimate obtained

when total normal force is not known.

CONCLUDING REMARKS

A study has been made of the subsonic aerodyns_nic loading character-

istics of a 45 ° sweptback-wing and body combination at high angles of

attack_ where no previous systematic correlation or suitable theory has

been available. A degree of correlation was found between the stall

patterns and spanwise-load distributions for the present model and for

three other 45 ° sweptback-wing and body combinations having plain wings

of aspect ratios from 4.0 to 8.0. The correlation was considered useful

for extrapolating the Weissinger span-loading method to higher angles of

attack for wings similar to those included in the correlation. A tenta-

tive approach has been introduced wherein the normal forces on a sweptback

wing can be distributed across the span for angles of attack above 20° .

A study of the measured loadings on a single panel of the swept wing and

a tentative method for approximating the normal-force coefficient have

been included in the appendix.

It appears that a further understanding of swept-wing loadings at

high angles of attack can best be gained by fundamental research into

the behavior of vorticity and separation on swept edges, both sharp and

rounded, including the assessment of the effects of Reynolds number and

Mach number.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Oct. 22, 1958
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APPENDIXA

EXACTRELATIONSFORVELOCITYANDANG:_E-OF-ATTACKCOMPONENTS

At the high angles of attack being considered in the present study;
account must be taken of the inclination of the plane of the sweptback
wing to the free-stream velocity. _e resolution of the free-stream
velocity into two mutually perpendicular w_locity componentsboth of
which lie in the horizontal plane is no lo]iger adequate. The resolution
can be accomplished with useful results, h{_wever, if one of the two
velocity componentsis kept in the incline([ plane of the wing° The two
velocity componentsmaybe designated as t]_e normal velocity component
Vn which lies in a plane containing a cho:'d normal to the midchord line
of the swept wing_ and the spanwise veloci;y component Vb which lies
in a plane directed along a constant percent-chord line (usually the
midchord line). Both of these mutually perpendicular velocity components
lie in the plane of the wing only at zero _<ngleof attack. At all other
angles of attack_ only one of the componentscan be kept in the wing
plane_ while the other will meet the wing _t an angle of attack _n or
<mb,the subscript matching the velocity corLponentin question.

Case i: _b : (i

If the spanwise velocity component VI is kept in the plane of the
wing and directed along a line of constant percent chord_ the following
exact relations apply:

_b =0

<_n: sin-l(. ==:sinc _)cosA_]. + tar2A sin 2

Vb = VoosinA cos <L

Vn = V_cos A_I + tan2A sin2_

(A1)

Case 2: c_n : (

If the normal velocity component Vn is kept in the plane of the
wing and directed along a normal chord, the following relations hold:



ii

_n = 0

_b : sin. l( sin s <)sinA$1 + cot2A sin

Vn : V_cos A cos

Vb = V sin A_I + cot2A sina_

(A2)

The velocity ratio Vb/V _ and the angle-of-attack component _b for

case 2 are plotted in figure 21. 0nly case 2 is required for the analysis

presented in appendix B.
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APPENDIXB

CHARACTERISTICSOFTHES]_NGLEPANEL

Comparisonof Experimental ResuTts for the Single
Panel and the Comple;e Wing

In an attempt at furthering the underl_tanding of loads on sweptback
wings at high angles of attack, the presen, study included the measurement
of the experimental pressure distributions for the model with one wing
panel removed. Somemarked differences in the section characteristics
for the inboard stations and someequally interesting similarities in
the over-all normal forces for the single-panel and complete-wing model
configurations bear noting.

Pressure distributions.- There were nc_ noteworthy differences between

the lower surface pressure distributions f_r the single panel and complete

wing, but the upper surface distributions _'or the inboard stations differed

significantly, especially above 20 ° (figs. 3(f) to 3(i)). Prominent

negative-pressure-coefficient peaks disapp_ared from the distributions

for the complete wing above 20 ° , but persisted in the distributions for

the single panels to 36 ° .

Section characteristics.- The aforeme1_tioned peaks in the inboard

upper surface pressure distributions for t]_e single panel at the high

angles of attack were generally reflected :n the correspondingly higher

section normal-force coefficients in figur_s 9 and Ii. The resulting

change in the angles of attack at which th_ initial peaks occurred in

the section normal-force coefficients (fig 9) is shown in figure 22.

The similarities in the pressure distribut:ons at the higher angles of

attack for all but the inboard station resiLlted in a general convergence

(fig. i0) of the section centers of pressu]'e to approximately 40-percent
chord.

Normal-force coefficient.- The integrated normal-force coefficients

for the single panel were less than those 1or the complete wing at angles

of attack below 24° , but were higher at 36(_ by i0 percent at 0.3 Mach

number and by 2_ percent at 0.5 Mach numbe]' (fig. 13). Above 20 °, at

both Mach numbers, the integrated no_al-f(_rce coefficients for the single

panel were within lq percent of those for lhe complete-wing model deter-
mined from the force measurements. At botl Mach numbers and for all

angles of attack, the centroids of the actual loadings on the single panel

and on the complete wing were within 4-per(ent wing semispan as shown in

figure 12.
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Estimated Single-Panel Normal-Force Coefficient

It is interesting to direct attention to the problem of estimating

the over-all normal-force coefficients on the single panel of the swept

wing (fig. 23). An empirical approach follows which considers the single

panel as a yawed, low-aspect-ratio wing, uses the exact relations for the

components of velocity and angles of attack from appendix A, and uses the

single-panel experimental results (fig. 22) as a guide in the assumption

of a suitable, simplified_ conceptual vortex model.

Vortex model.- The single panel will be assumed to be represented

by an equivalent surface of low aspect ratio indicated by the dashed

lines in figure 24(a). A single horseshoe-type vortex such as used in

reference ii for the unyawed wing will be assumed to represent the

equivalent low-aspect-ratio surface as shown in figure 24(b). To account

for the effect of sweep, which may be considered to be the complement of

the yaw angle, the velocity is resolved into the c_nponents shown in

figure 24(c). The vortex is assumed to have a segment of length 9*

which would produce no lift in unyawed attitude but which now may be

considered bound with respect to the normal velocity component Vn. The

initial abrupt changes in the section normal-force coefficients (fig. 9)

were assumed to be indicative of the shedding of vorticity at the angles

of attack shown in figure 22. Because the pressure-distribution stations

were identified by their spanwise intersections with the panel quarter-

chord line, 9* was determined outboard of the intersection of the latter

line with b', namely, outboard of 9 : 0.3 as shown in figure 22.

Normal-force coefficient.- The normal-force coefficients for the

yawed wing of low aspect ratio (Ar = 0.22) may be expressed as the sum

of the contributions of each of the two bound segments of the vortex.

The first contribution, designated CN'(Vb/_) 2, results from the segTnent

along b' whose normal velocity is Vb. The normal-force coefficient

CN' was determined from the unyawed data in references 12 and 13 for the

angle of attack _b- The contribution of the second se_nent may be

related to that of the first by the Kutta-Joukowsky law. If the contri-

butions are proportional to the lengths of the segments and to the respec-

tive normal velocity components_ the normal-force coefficient may be

expressed as

\ oo. \ t"bAr/
(B1)

The normal-force coefficients estimated from equation (BI) in which 9 _ is

derived from figure 22 are compared with those measured experimentally for

the single panel in figure 23. (If the same degree of correlation exists

for single panels as existed for the complete wings in figure i6(:_), then

the values of 9_ in figure 22 might apply for other 45 ° sweptback panels

whose plan forms approximated that of the present model.)
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(a) Model at _ = 4° .
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(a) Swept-wing panel and equivalent wing of low aspect ratio°
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(b) Single-vortex model for low-aspect-ratio wing, unyawed.
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(c) Modified vortex model to account for yaw.

Figure 24.- Conceptual vortex model for the single panel of the

swept wing.
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